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Lattice calculations
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Abstract. In this contribution we describe how an exact chiral symmetry can be realized on the lattice. A
practical realization of a lattice Dirac operator that leads to a chiral invariant lattice action is discussed
and a simulation with this operator is presented that aims at testing the phenomenon of spontaneous chiral
symmetry breaking in QCD.

PACS. 11.15.Ha Lattice gauge theory – 12.38.Gc Lattice QCD calculations

1 Introduction

Since its formulation in 1974 [1], lattice QCD has ma-
tured to a well-established part of theoretical high-
energy physics and it nowadays provides many non-
perturbatively obtained, ab initio computations and re-
sults in a variety of fields. These include, besides QCD, the
electroweak standard model, spin systems, tests of semi-
classical pictures (instantons etc.) and even quantum grav-
ity (see, e.g., [2]). One of the reasons why the impact of lat-
tice calculations is becoming stronger and stronger is the
fact that (parallel) computers, the workhorses for lattice
physicists, have become more and more powerful. How-
ever, a certainly equal important reason is that over the
years a number of conceptual developments have been es-
tablished that help in making simulations faster and much
better controlled:

– Accelerating the continuum limit
Lattice QCD actions that are used in the past give rise
to lattice discretization errors that are linear in the lat-
tice spacing a. Considering pure gauge theories, these
effects are only quadratically in the lattice spacing [3,
4] and hence simulations including fermions slow down
the approach to the continuum limit substantially. Fol-
lowing the concept of Symanzik improvement [5,6], this
drawback can be overcome: it can be shown that at
O(a) only one additional term can be added to the
standard Wilson fermion action. This term, called the
Sheikoleslami-Wohlert term [7], is multiplied by a free,
tunable parameter csw. It is possible to compute this
coefficient non-perturbatively in such a way that it
exactly cancels the linear lattice discretization effects
coming from the standard Wilson fermion action and
hence the discretization errors are reduced from O(a)
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to O(a2) [8,9]. Of course, the continuum limit itself still
has to be performed, but it is reached with a much
faster rate by using these so-called non-perturbative
O(a)-improved Wilson fermions.

– Finite-size effects
Lattice simulations have necessarily to be done in a
finite, 4-dimensional box of physical size L4. In order
to fit physical quantities like a proton into this box, it
is necessary that the physical size is large enough. The
linear physical extent L is given by L = Na, where N is
the number of lattice points. If the lattice spacing a is
kept small enough to avoid large discretization effects,
the number of points to be simulated becomes easily
very large. Therefore, trying to avoid finite-size effects
results in very costly and demanding simulations.
However, in many circumstances it is possible to turn
this drawback around and promote it to an advan-
tage. It is possible to use the finite volume as a probe
of the system and extract from the finite-volume ef-
fects of physical quantities infinite-volume properties
of the system under consideration. One prominent ap-
plication is to use the finite size of the box as the scale
used in non-perturbative renormalization (see the re-
views [10,11]). Another strategy is to develop finite-
size formulae that actually describe the finite-size ef-
fects analytically and allow for a well-controlled deter-
mination of infinite-volume quantities. An example of
this strategy is given below.

– Dynamical fermions
QCD, as a quantum field theory allows for the cre-
ation and annihilation of virtual quark-antiquark pairs
that lead to renormalization effects like the running
of the strong-coupling constant, i.e. the value of the
strong-coupling constant depends on the energy where
it is measured. In order to take these effects into ac-
count, the full theory including the fermionic degrees of



254 The European Physical Journal A

freedom has to be simulated. The algorithms that are
known today for these simulations lead to very costly
simulations [12]. Although, by a continuous develop-
ment of the algorithms it was possible to gain a factor
about 20 in the, say, last 10 years, physical results with
well-controlled errors would need computers that can
deliver 10–100 teraflops performance, something that
cannot be reached today.
Therefore, many simulations performed so far neglect
the dynamical quark effects and work in the so-called
quenched approximation. It is surprising —and not re-
ally understood— that this approximation (or better
truncation) of the theory still gives results that often
differ from experimental data by only 20% to 30%. Of
course, eventually the quenched approximation has to
be given up and the lattice community worldwide is in
a transition period to switch to real dynamical-fermion
simulations.

– Chiral symmetry
The lattice and chiral symmetry, i.e. the invariance of
the action under exchange of left-handed and right-
handed massless quarks, were two concepts that did
not seem to fit together for a very long time. Only
recently a solution to this longstanding problem could
be found and in the remaining part of this contribution
we explain this new development.

2 Spontaneous chiral symmetry breaking

In our theory of strong interactions, quantum chromody-
namics, chiral symmetry is assumed to be spontaneously
broken. This symmetry allows for an interchange of left-
handed and right-handed quarks while leaving physics in-
variant —at least when these quarks are massless. In this
case a scalar quark-antiquark qq̄ condensate is assumed
to be developed and the Goldstone particles are identified
with the light pions that are observed in nature.

As stated above, the occurrence of spontaneous sym-
metry breaking is an assumption. The phenomenon is in-
herently non-perturbative and cannot be addressed with
approximative methods like perturbation theory. How-
ever, even with numerical simulations it is difficult to test
spontaneous chiral symmetry breaking (SχSB). The rea-
son for this becomes clear when the way to detect SχSB
is considered. Let us choose a system that has a finite
physical volume V , as would be required for numerical
simulations. Further, we introduce a quark mass m. SχSB
is tested in a double limit, where first the volume of the
system is sent to infinity and then the quark mass is sent
to zero. If a non-vanishing scalar quark condensate re-
mains, SχSB is identified. Obviously, such a procedure is
infeasible within the approach of numerical simulations.

The way out is the use of chiral perturbation the-
ory [13]. In this approach chiral symmetry breaking is
also taken as an assumption with the consequences of the
appearance of non-vanishing field expectation values and
Goldstone particles. A special situation arises when the
size of the box becomes comparable to or even smaller
than the Compton wavelength of the Goldstone particle.

Then, the corresponding field can be considered as be-
ing uniform and it is possible to set up a systematic ex-
pansion that starts in the lowest order with an effective
Lagrangian of this constant mode and then taking system-
atically higher-order fluctuations into account [14].

3 Chiral symmetry on the lattice

Chiral perturbation theory as well as the lattice method
was developed for quantum chromodynamics in order to
deepen our understanding of the strong interactions. Still,
until relatively recently, both approaches could not really
come together, at least in the region of very small quark
masses where chiral symmetry starts to get restored. The
reason was that the lattice seemed to be lacking the con-
cept of chiral symmetry and for many years the infamous
Nielson-Ninomiya theorem [15] has been telling us that it
would even be impossible to implement chiral symmetry
in a consistent way on a lattice.

The situation only changed a few years ago, when
an old work by Ginsparg and Wilson [16] was rediscov-
ered [17]. The Ginsparg-Wilson paper contained actually
a clue for answering the problem of chiral fermions on
the lattice. The interaction of the fermions is described by
some particular operator, the Dirac operator, the details
of which should not be discussed here. In the continuum
theory this Dirac operator anti-commutes, of course, with
γ5. On a lattice with non-vanishing lattice spacing a, such
an anti-commutation property cannot be demanded. If
the anti-commutation property is insisted on, the fermion
spectrum of the lattice theory does not correspond to the
one of the target continuum theory.

The suggestion of Ginsparg and Wilson was to replace
the anti-commutation condition by a relation (now known
as the Ginsparg-Wilson (GW) relation) for a lattice Dirac
operator D:

γ5D +Dγ5 = aDγ5D . (1)

Clearly, in the limit that the lattice spacing vanishes, the
usual anti-commutation relation of the continuum theory
is recovered.

The fact that renders the relation eq. (1) conceptually
extremely fruitful is that it implies an exact chiral sym-
metry on the lattice even if the value of the lattice spacing
does not vanish [18]. The notion of a chiral symmetry on
the lattice is a conceptual breakthrough and renders the
lattice theory in many respects to behave like its contin-
uum counterpart with far-reaching consequences.

However, as nice as the theoretical progress that fol-
lowed the rediscovery of the Ginsparg-Wilson relation was,
as much of a challenge are realizations of operators D that
satisfy the Ginsparg-Wilson relation (see [19–21] for re-
views). Let us give a particular example for such a solution
as found by H. Neuberger [22] from the overlap formal-
ism [23], based on the pioneering work of D. Kaplan [24].
To this end, we first consider the standard Wilson Dirac
operator on the lattice:

Dw =
1
2

{
γµ(∇∗

µ +∇µ)− a∇∗
µ∇µ

}
(2)



K. Jansen: Lattice calculations 255

with ∇µ, ∇∗
µ the lattice forward, backward derivatives,

i.e. nearest-neighbour differences, acting on a field Φ(x):

∇µΦ(x) = Φ(x+ µ)− Φ(x) ,
∇∗

µΦ(x) = Φ(x)− Φ(x+ µ) .

We then define
A = 1 + s − Dw (3)

with 0 < s < 1 a tunable parameter. Then Neuberger’s
operator DN with mass m is given by

DN =
{
1− m

2(1 + s)
D

(0)
N +m

}
, (4)

where
D

(0)
N = (1 + s)

[
1− A(A†A)−1/2

]
. (5)

What is important here in the definition of Neuberger’s
operator is the appearance of the square root of the
operator A†A. This means that DN connects all points
of the lattice with each other. Note, however, that de-
spite this the operator is a local operator in the field-
theoretical sense [25]. In practice, the operator A†A is
represented by a matrix that is, unfortunately, very large.
Having a physical volume of size L4, the number of sites
is N4 = (L/a)4. As the internal number of degrees of free-
dom per lattice point is 12, we end up with A being a
(12N4)⊗ (12N4) complex matrix with N typically in the
range 10 < N < 30 for present days simulations. Hence we
have to construct the square root of a very large matrix.
What is worse, to compute relevant physical observables,
we don’t need the operator DN itself but its inverse. Such
an inverse is constructed by iterative methods like the con-
jugate gradient algorithm and its relatives [26].

The square root can be constructed by a polynomial
expansion, normally based on a Chebyshev approxima-
tion, or by rational approximations. Both methods give
comparable performances in practice. The convergence of
the approximation to the square root is determined by the
condition number of the (positive definite) matrix A†A.
When the matrix A†A is normalized such that the largest
eigenvalue is 1, the condition number is given by the in-
verse of the lowest eigenvalue.

It was shown that very low-lying eigenvalues of the
operator A†A can appear in numerical simulations result-
ing in large condition numbers [27]. In such situations the
convergence of the approximations chosen can be rather
slow and special tricks have to be implemented to accel-
erate the convergence. The most fruitful improvement is
to treat a part of the low-lying end of the spectrum ex-
actly by projecting this part out of the matrix A†A [28,
27]. Further improvements can be implemented, examples
of which are discussed in ref. [27].

Despite all these technical improvements it is found
that a typical value for the degree of a polynomial is
O(100) and a typical value for the number of iterations
to compute the inverse of DN is again O(100). Since in
each iteration to compute D−1

N the Chebyshev polyno-
mial has to be evaluated, this means that for a value of

a physical observable on a single configuration ten thou-
sand applications of a huge matrix on a vector has to be
performed. To compute the expectation value of some ob-
servable, this observable has to be averaged over many
gluonic configurations. Clearly, this results in a very de-
manding computational effort.

4 The scalar condensate

The existence of an exact lattice chiral symmetry allows
the use of finite-size effects to test for SχSB in QCD. Using
a chiral invariant formulation of lattice QCD, it is possible
to reach the region of very small quark masses where it is
to be expected that chiral symmetry starts to get restored.

The order parameter of chiral symmetry breaking in
quantum chromodynamics is the condensate of a quark-
antiquark state Σ = 〈ψψ̄〉. A (standard) caveat here is the
fact that all computations are done in the quenched ap-
proximation. In QCD there is a peculiarity: the field con-
figurations can have topological properties, characterized
by the so-called topological charge which can be measured
—unambiguously— through the number of zero modes of
the operator DN. In fact, the formulae from quenched chi-
ral perturbation theory are parameterized by the topolog-
ical charge and it is hence very important to be able to
identify the topological charge of the gauge field config-
urations. Without the special properties of lattice Dirac
operators that satisfy the Ginsparg-Wilson relation such
an identification would be very difficult.

The complete theoretical formula from quenched chiral
perturbation theory in lowest order is

Σν(m,V ) = Σ z [Iν(z)Kν(z)
+Iν+1(z)Kν−1(z)] + C · m/a2 . (6)

The only important thing to notice here is that this rel-
atively involved combination of Bessel functions only de-
pend on one scaling variable,

z = ΣmV , (7)

that contains the quantity of interest, namely the infinite
volume, chiral limit scalar condensate Σ. The additional
term C · m/a2 is a power divergence that comes from the
renormalization properties of the theory. We will not dis-
cuss this field-theoretical aspect here but just notice that
this term has to be included in the fit.

In fig. 1, we show the result of our numerical compu-
tation of the scalar condensate [29] in a fixed topological
charge sector |ν| = 1 as a function of the quark mass at
several volumes. The solid line is a fit to the prediction
of chiral perturbation theory, eq. (6). We find that the
simulation data are described by this prediction very
well. This means that we find evidence for the basic
assumption on which the theoretical prediction relies: the
appearance of spontaneous chiral symmetry breaking in
(quenched) QCD.

We want to remark that this work was the first of this
kind. After this work, a number of other groups repeated
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Fig. 1. The scalar condensate computed on lattices of vari-
ous size as a function of the quark mass. The solid lines are
2-parameter (Σ and the constant C of eq. (6)) fits, according
to the prediction of chiral perturbation theory.

such an analysis [30–32] and it was reassuring to observe
that very consistent results were found. In a sub-sequel
work [33,34] we developed also a quite general method for
renormalizing the value of the bare scalar condensate as
extracted from the finite-size scaling analysis performed
here.

5 Conclusion

In this contribution we have demonstrated that by a com-
bination of theoretical ideas, improved numerical meth-
ods and the use of powerful supercomputer platforms it
is possible to test basic properties of field theories. Of
particular interest was the question of whether the phe-
nomenon of spontaneous symmetry breaking (SSB) does
occur in certain field theories important in elementary-
particle physics. The phenomenon of SSB leads to far-
reaching consequences in theories like QCD or the scalar
sector of the electroweak interactions. In the work per-
formed here, we found strong evidence for the appearance
of spontaneous chiral symmetry breaking in quenched lat-
tice QCD.

The results presented here have been obtain in a most enjoy-
able collaboration with my colleagues and friends P. Hernán-
dez, L. Lellouch and H. Wittig.
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